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FRICTION OF SOLID BODIES WITH FORMATION
OF A MELT LAYER

A. A. Shugai UDC 532.526.2+536.242

Some laws governing friction of solid bodies with formation of a developed layer of melt are studied. In
contrast to [ 1], we study a case when a finite body moves along a melting substrate ( half-plane) with the
heat required for melting being liberated by frictional heat release or from a heat flux from the body. To
determine the outflow of heat from the melt layer to the half-plane and the zone of melt in front of the moving
body we considered two plane boundary-value problems of the equation of heat conduction.

1. Laws Governing Melt-Film Formation in High-Speed Friction. In friction of solid bodies with a high
relative velocity and at an elevated temperature, transition of the material of the rubbing bodies to a plastic or
liquid state is possible in the zone of frictional contact {1-3]. In what follows we consider some laws governing the
friction of bodies for a developed melt layer when the relative velocity of motion or temperature of one of the bodies
is rather high and the thickness of the melt layer is & > 107°—10"% cm.

A plane model problem of the formation of a melt film in friction of smooth bodies (the thickness of the
film is much larger than the characteristic roughness) is considered. To describe the motion of the melt we use the
equations of a viscous fluid. It is assumed that a sufficient thickness of the film allows one to neglect plastic
deformations in rubbing surfaces and physical effects of the type of disjoining pressure in thin films.

In friction of a body of limited dimensions on a substrate, melting of both the moving body and the substrate
is possible, depending on the parameters of the problem. In the first case, consumption (rubbing off or wear) of
the substance of the body and, consequently, the presence of a component of the body velocity toward the contact
zone have a substantial effect. The dependence of the rate of wear (rate of melting) on the determining parameters
along with the dependence of the force of friction are determined in solution of the problem. The load ~ the force
pressing the body against the substrate — is assumed to be known. As is shown in |1, 4], the assumption of a melt
layer of constant thickness is justified, which makes it possible to obtain dependences for the rate of melting and
the force of friction from the balance relations of mass and heat in the mell film. A drawback of the assumption is
a reduction of the order of the determining system of equations and the inevitable relationship between the pressing
force and the consumption of melt in the initial cross section. In [1] the natural assumption that consumption in
the initial cross section equals zero and the entire melt is entrained by a moving plane is adopted. In spite of the
specific valne of load corresponding to this solution Yp, it can be used in virtually all applications, since the
correction to it allowing for the actual load value Y is on the order of

and, as a rule, is small due to the small thickness of the melt layer.

In [4] a case of melting of a body on a slowly moving heated substrate in which with a sufficient value of
pressing force the reduced parameter is higher than unity and, depending on the value of the load, a portion of
the melt is pressed out in front of the body is considered. A more accurate formulation, which is based on the
method of integral relations of boundary-layer theory and leads to the necessity of integration of a system of
ordinary differential equations, is developed in [5].
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Fig. 1. Simplified scheme of frictional contact in friction of heated or thermally
insulated body on melting substrate.

If in high-speed friction of solid bodies the substrate is melted, then account for the variable thickness of
a melt layer is of principal importance. In [6] the problem of substrate melting in motion of a heated body is
considered by an asymptotic method in a self-similar formulation. An alternative approach is based on exact solution
of the system of equations, in which small terms are discarded. Estimates show that the flow of liquid in the melt
film can be described in an approximation of lubrication. In fact, the convective terms in the equation of inflow of
heat are on the order of EcPr, if the substrate melts due to viscous dissipation in the contact zone, or on the order
of Ste, if the substrate melts in contact with a moving heated body [7]. The convective terms in the equation of
momentum are on the order of Ec or Ste/Pr. Thus, a lubrication approximation can be used if Ec, Ste/Pr << 1 (for
a fast-moving thermally insulated body) or Ste, Ste/Pr <<1 (for a heated body). The system of equations in a
lubrication approximation that describes the flow in the melt film has the form

. 2 2 2
ﬂ+ﬂ=0,k%+u @_ =0, _Q.*.Iua—';:O. (1.1)
dx 3y dy ay dx aqy

Here x, y are Cartesian coordinates associated with the moving body; the axis y is directed toward the melt layer
(Fig. ).

2. Plane Boundary-Value Problems of Heat Conduction. In general, the study of problems of heat and
mass transfer with phase transitions is complicated by the necessity of simultaneous solution of the hydrodynamic
and thermal parts of the problem in the melt region and the thermal problem in a solid phase with an unknown
boundary — the front of the phase transition — the position of which is determined by an additional boundary
condition — the Stefan condition. However, in a number of formulations, a solution of the thermal problem in a
solid phase and, consequently, the heat flux from the melt zone can be found irrespective of the shape of the melt
layer. Often the hydrodynamic part of the problem can be considered separately after solution of the combined
thermal problem in the melt layer and solid and determination of the position of thc front.

As an example of determination of heat outflow to the solid phase, we consider the familiar one-dimensional
solution of the classical Stefan problem for the equation of heat conduction. Let the meit front x = 0 move at a
constant velocity —U inside a solid substance {x < 0} with temperature Ty {8 |:

2
PsCs d—T=k§4—721, x=<0;
dx dx
+0
x=0: T="Tg, [k%] =plUL, x=—o0w: T=T,. (2.1)

Using two boundary conditions, we can determine the profile of the temperature and heat outflow to the
solid substance. Then the Stefan condition can be written in the form
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Fig. 2. Plane Stefan problem: formation of melt layer in melting of half-plane
by heated body.

dT
kS .c pUL + peeU (T — Tp) = pUL, .
+

Thus, for the one-dimensional formulation, it follows from the assumption of stationarity of the temperature
profile in the solid substance in the system of coordinates associated with the moving melt front that allowance for
heat removal to the solid substance is equivalent to use of the effective quantity L. = L + ¢;(Tm — Tg) instead of
the specific heat of melting.

Within the framework of the same one-dimensional formulation we assume that the solid substance melts
in motion of a heat source {x = Iy} with temperature T,, > T,. When EcPr << Ste << 1, a melt layer is formed as
a result of heat transfer, and the convective terms and viscous dissipation in the equation of heat inflow can be
neglected. Thus, the thermal problem is separated from the hydrodynamic and for the melt layer we have the
following boundary-value problem:

2
4T o,
dx
x=l: T=T,, x=0: T=T,, k% =p UL, .
+0

Using three boundary conditions, we find the thickness of the melt layer:

Ps 5 (Tw - Tm)
> = (2.2)

v 1

br = U 'Pr N’

The one-dimensional problem is physically inconsistent, since it is necessary to organize the removal of
the melt in a special manner (e.g., absorption of it by the surface of a heat source moving at velocity NU). However,
this formulation can be used in melting of a solid substance by a blunt heat source. If EcPr << Ste << | and the
curvature radius of the heat source at a front point R >> [y, then the formulated relation is applicable near it and
the thickness of the melt layer is prescribed by formula (2.2). Since in this case the Reynolds number over the size
of the melt zone is small, Ste./NPr, the fields of velocity and pressure can be determined from the solution of the
equations in the Stokes approximation.

We now consider a plane formulation of the Stefan problem. In a polar system of coordinates {r, ¢} with
4 pole at the critical point of the moving heat source (Fig. 2) the Stefan condition has the form:

, r=A-0
p UL (sin pA’ + cos pA) = [k T 54 "T]] (2.3)

or ~ A 5—(; r=A+0 ‘

Here r = A{p) is the equation of the melting front. An obvious solution of the plane problem is an analog of the
one-dimensional solution presented above. We consider this case of a principally different geometry of the heat
source by the example of a beam {p = 0} moving in a longitudinal direction. At EcPr << Ste << 1, when the
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temperature satisfies the Laplace equation in the melt layer and the heat outflow to the solid substance is neglected
(we let To = Ty, or take into account the outflow in a model manner by substituting L for L), it is not difficult to
find a solution of the boundary-value problem

AT, =0, 0sr=2A,, 09 =<2,
Ty(r, O =Ty (r, 1) =1,

T, 0,9)=1, T, (A,p) =90, (2.49)

o aT, Ay 9T,
sin @A + cos pA| = N Ay - A op = Ay (p),

A (p) = — 5=

- 7 T, (r;,p)=1-=V2r, sin£
sin
2

3

Here ry =r/ly, Ty = (T — Tm)/(Tyw — Ty) are dimensionless variables. The melt front has a parabolic shape. With
distance from the edge of the beam, the temperature profile changes from 7'y (r;) =1 — \/i—r; at ¢ = x to linear
along the coordinate across the beam. The heat flux has a singularity r— 2 at r = 0. Since A(m) = l7/2, other
parameters being equal, the thickness of the melt layer in front of the plate is half that in front of the body, which
has a front point. The constructed solution is valid if the thickness of some heat source on the scale [ > Iy can be
neglected.

In friction of a solid body on a melting substrate, allowance for the heat outflow from the melt zone to the
surrounding solid substance is important. If the melt layer is rather thin, then the heat outflow can be determined
assuming that a heat spot with temperature Ty, moves along the substrate surface. This scheme is applicable if the
thickness of the temperature boundary layer //vVPe is much larger than the thickness of the melt layer. For a
thermally insulated body it is necessary that VECPr << 1 [7]. If the substrate melts in contact with a moving heated
body, then the scheme with a heat spot is applicable when VSte << 1. The dependence of heat outflow on the
distance x from the spot edge can be determined from the self-similar solution for a temperature boundary layer

S SkSU
() = \/(5’—7) (T = To) -

g (x) 1 1\ Ste, ke ¢, (T — Top)
G \/(_] VRePr VI s ' )

p UL  Vm x ke N L

3. Melting of Substrate Due to Frictional Heat Release in Contact with a Moving Thermally Insulated Body.
A case of high-speed melting of solid substance by a thermally insulated thin body is studied in [7] in the same
approximation. By symmetry, the problem corresponds to a partial case of melting of substance by a moving plate
(the surface of the substrate beyond the zone of frictional contact is assumed to bc thermally insulated). In this
case the dependences are simplified and can be presented in a finite form.

The boundary conditions for system of equations (1.1) are

y=0: %=0, u=10;
. T y=6-0 .
y=348: pULS (x) = {— k— ,u=U, v=(0 =MNUS (xy, T=T,. 3.1
by o m
y y=6+0
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The quadratic velocity profile is determined from the equation of momentum and the boundary conditions.
The pressure gradient in the layer is found by the first equation of (1.1), which is integrated with respect to the
fayer thickness (balance of consumption). In finding the integration constant we use an initial condition (0) = 0
that is natural for a thermally insulated body. Substitution of the velocity profile into the equation of heat inflow
gives an ordinary differential equation for d(x)

2
g _1+30@N-1)" pU 3.2
) +PSUL = p.L 3 - (3.2)

Using formula (2.3) for heat outflow g(x), we have

g 1 l Ste,,
SV eV

The solution of Eq. (3.3) in dimensionless variables is

2
kg, _ 1 +30@N-1) Ec _l_ (3.3)
ke N N Re d

X 0 Re ——
é]=%a x1=:;'a ﬁ=\/(§)>51=f1 X1

2 2
A=\/ 21+3QN - D71 Stey kg Ste,, \/[kscs).

N x Ec Pr ke N Vr Ec Pr ke N

For weak and strong heat removal we obtain

2
2(1+3QN -1 S k
A=\/ [+ 3¢ )| Stey, \/ scs] (Ste, << VEC Pr ),

N VaEcPr ' |ke,N

(Ste, >> VEc Pr ).

2 _
_ 1+3 (2N - 1) va Ec Pr \/' kCVN
4= N Ste,, ke

If we neglect the variation of the thermophysical characteristics of the medium in phase transition, then,

Ste V7 Ec Pr
A=yE - ——fw -, _4VrEcPr
Vx Ec Pr Ste,,
The dependence of the pressure in the layer on the longitudinal coordinate has a form
2
P = - BUCN-UE,, [z] = _8C@N-D g [_] , (3.4)
A"l l A {

Here we took into account that the pressure in the last cross section of the melt layer was constant p()) = 0. For
the force of friction

i
Ju
X=[pn—
o

dx = 4uU (3N - 1)%:%\/(%—5). (3.5)

y=0

If we neglect the variation of the thermophysical characteristics of the medium, then

Re Ste 1/2
X=2\/7yU\/—— l+——| ~U (Ste,, << VEc Pr ),
[Ec] [ V8x Ec Pr v

967



layer can originate inside the zone of frictional contact). The assumption that &(0)

v _y 7?2 (Ste,, >> VEc Pr ).

The load value is determined by the formula

/
Y=fpdx=6 21:2 I pLl.
0

(3.6)

At smaller values of the pressing force, a solution of the problem in this formulation does not exist (a melt

= (0 (contact between body and

substrate) leads to the fact that at larger values of the pressing force a portion of load is compensated by a
concentrated force applied to the body in the cross section x = 0.

4. Melting of Substrate in Contact with a Moving Heated Body. As is shown above (Sec. 2),

when

Tw > Tm, a melt region of a thickness /772 is formed in front of the heated body. The contribution of this zone to
the balance of mass and heat in the melt layer ~I;/! = Ste/PrRe is negligibly small, since in the approximation
considered the terms ~1/Re are neglected. Within the framework of the equations of lubrication, we have for d(x)
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Using formula (2.5) for the heat outflow ¢(x), we obtain

+ﬁ\/[] Ste,, \/[kscs]z 3-8N+6N2£c_+ Ste i

VRe Pr ke N N Re NRePrlé

The solution of Eq. (4.1) in dimensionless variables is

Ste 7 Ste ke N 7z Ste ke N

2
2 Ec Pr Ste,, kg Ste,, ki
Az\/~(1+(6N2—8N+3) ]+ w 5% ) = \/[ e
N

For weak and strong heat removal

2 2 Ec Pr Ste,,
A=\/— 1 + (6N - 8N+ 3) -
N Ste v Ste

\/ kC
ke N ’

Ste << Ste + (6N° — 8N + 3) Ec Pr;

Ste + (6N2 — 8N + 3) Ec Pr v ske N
N VSte Ste,, kg ’

Stevzv >> Ste + (6N2 — 8N + 3) Ec Pr.

If we neglect variations of the thermophysical characteristics of the medium, then

A \/ Ec Pr Ste,, 4 v (Ste + Ec Pr)
Vr Ste VSte Ste,, .

] |

(4.1)
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Fig. 3. Dimensionless force of friction X; as a function of dimensionless
relative velocity of motion U; (the substrate material and dimensionless
parameters of friction are given in Table 1). Curves a and b correspond to
friction of thermally insulated and heated bodies.

TABLE 1.
ng%{;&ég Material Pr Reo N Stgw
I Ice 11.4 3.85-10° 0.07 0.040
11 Aluminum 0.028 5.33-10° 0.01 0.005
11 Ice 11.4 3.85-10° 5-107° 0.064

The dependence of pressure in the layer on the longitudinal coordinate, load, and friction force are
x
Z b

At smaller load values, a solution of the problem in this formulation does not exist. At higher values of the

pressing force, melting inside the substrate begins. In this case

¥ = 4uU(3;1N—_11\/(RePr)‘

determined by formulas similar to (3.4)-(3.6):

_6uU (2N — 1) Re Pr in
A%l Ste

p(x)=

_ U N =D (x| _
Al !

_ 6uU (2N - 1) Re Pr

2
A Ste

Y

Ste

In the case of weak heat removal

X ~U?"% (Ste >> Ec Pr), X ~U'"? (Ste << Ec Pr),
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with strong heat removal

X~U"?(Ste>>EcPr), X~U " (Ste << Ec Pr).

As an example of use of the obtained relations we consider the behavior of the force of friction as a function
of the velocity of motion under real conditions of high-speed friction. The different character of the dependence
X (U, which is determined by thermal conditions in the contact zone, is of interest. Figure 3 presents the curves
X, (Uy), where X; = X/plLl is the dimensionless force of friction, U; = VEc = U/VL is the dimensional velocity of
motion. Variation of thermophysical parameters of the substrate material in phase transition is neglected. Since the
Reynolds number changes with the velocity of sliding, the quantity Reg=Re/vVEc= /L /v is assumed to be constant.

Curves a and b correspond to the frlctlon of a thermally insulated and a hecated body, respectively. The
thickness of the melt layer is d = 10~ 5 and 10™% cm (I=1 cm) at points 1 and 2, and in the range of parameters
between them a transition to the mode of friction with a developed melt layer occurs. The curve X (U;) for a heated
body passes through the coordinate origin, since even at a small velocity of motion a sufficient thickness of the melt
layer is provided by the heat flux from the body. For a thermally insulated body, the initial portion of the curve
is, as a rule, characterized by reduction of the force of friction due to a sharp increase in the thickness of the melt
layer. This probably explains the experimentally observed substantial decrease in the force of friction with an
increase in the velocity of motion and formation of the melt layer in the zone of frictional contact. At a large velocity
of motion, the weak heat removal is asymptotic and the force of friction increases with the velocity. At rather large
velocity of motion, the force of friction for a heated body becomes equal to that for a thermally insulated body (Fig.
3, . The intersection of curves & and a corresponds to the instant when the maximum temperature in the melt
layer exceeds the temperature of the body, the thickness of the layer is restrained by the heat flux inside the
moving heated body, and the force of friction is, therefore, higher than in the case of a thermally insulated body.
In Fig. 3, II the point of intersection shifts to the region of high velocities of motion, since the Prandtl number is
small for aluminium (liquid metals) and the effect of viscous dissipation on thermal processes in the layer is weaker.
Figure 3, /11 presents the situation of strong heat removal Stefv >> Ste, when for a heated body the curve X (U/)
has a valley in the range of the velocity of motion Ste << U]2Pr << Stefv.

5. Length of Melt Zone Behind Body. A solution of the problem of collapse of a cavity behind a moving
heat source of an arbitrary nature in approximation of a thin layer is constructed in {7}. The flow in the wake
region is characterized by a constant velocity profile u(x, y) = UN and temperature T(x, y) = Ty, and the length
of the melt cavity is determined by the relation

I+,
pULS () = [ q(x) dx. (5.1)
/

Here &(J) is the thickness of the melt layer in the cross section x = /. The formula gives the lower bound for the
length of the melt layer, since the temperature in the cross section x =/ is T(/, y) = Ty,. Estimate (5.1) is the more

accurate, the smaller the corresponding Stefan number Step, = ¢, (Tmax — T /L, Thmax = max T{l,y) . For a
v€ [0, 6(h]
thermally insulated body Ste, ~ EcPr << 1, with account for heat inflow from the body Ste, ~Ste + EcPr << 1.

Using formula (2.5) for the heat outflow g(x) to the solid substance, we obtain

\/( lc) o (D) v xRe Pr [kC N
1 + =1+

(5.2)

N 2l Ste,,

For a thermally insulated body

V()i EEE )
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With weak heat removal /./! = B/2 >> 1, and with strong heat removal /./{= B << |,

2. w EcPr kc,
B=[1+302N-1)7"] T

w

Ste,, kg

In a case of a heated body the relations are

\/ 1+l—c)=1+%\[TSw‘e\/[kch)’

l St ke,

l B (1 L. l
< _ = .£>>1 ,—L—=B _€<<1
1 2 l l l

NOTATION

_ 7 |Ste + (6N° — 8N + 3) Ec Pr] k¢,
Ste?

W

, B

kscs

U, velocity of motion of body relative to substrate; Y, load (force pressing body against substrate); X, force
of friction between body and substrate; /, length of body (zone of frictional contact); !, length of melt zone in

Ste
front of body, lr=% —P_re %; I, length of wake (cavity) of melt behind body; T, tempecrature of body; Ty, melting

point of substrate material; 7T, temperature of substrate material at a distance from melt zone; J, thickness of melt
layer; p, pressure in melt layer; u, dynamic viscosity; p, density; v = u/p, kinematic viscosity; c,, heat capacity;
k, thermal conductivity of melt; A = ks/pgcs, thermal diffusivity of substirate material in solid phase; ¢, heat outflow
from melt zone to solid phase; L, specific heat of melting; Le = L + ¢s(Ty, — Ty), effective specific heat of melting
of substrate material; Pr = ¢,u/k, Prandtl number of melt; Re =Ui/v, Reynolds number for melt layer; Ec =

U%/L, Eckert number; Ste = cy(Ty, — Ty) /L, Stefan number; Ste, = ¢, (Ty, — Ty)/Le, Stefan number for effective
specific heat of melting; Ste, = ¢,(Tw — Tg)/Le, Stefan number characterizing heat removal from melt zone to

substrate with temperature T at distance from zone of contact; N = %, ratio of densitics of solid and liquid phases

for substrate material; Pe = Ul/4, Peclet number; Rep, modified Reynolds number. Subscripts: T, related to heated
body; c, related to cavity of the melt; w, related to wall; m, related to melting; 0, characterizes an "undisturbed”
state; s, related to solid phase; e, at "effective” parameters; 1, at dimensionless parameters not having a simple
physical interpretation.
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