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Some laws governing friction of solid bodies with formation of a developed layer of melt are studied. In 

contrast to [1],  we study a case when a finite body moves along a melting substrate (half-plane) with the 

heat required for melting being liberated by frictional heat release or from a heat flux from the body. To 

determine the outflow of heat from the melt layer to the half-plane and the zone of melt in front of  the moving 

body we considered two plane boundary-value problems of the equation of heat conduction. 

1. Laws Govern ing  Melt-Film Format ion  in High-Speed Friction. In friction of solid bodies with a high 

relative velocity and  at  an  elevated tempera ture ,  transit ion of the mater ial  of the rubbing bodies to a plastic or 

liquid s tate  is possible in the zone of frictional contact [ I -3  ]. In what follows we consider  some laws governing the 

friction of bodies for a developed melt layer  when the relative velocity of motion or tempera ture  of one of the bodies 

is ra ther  high and  the  thickness  of the melt  layer  is 6 > 1 0 - 5 - 1 0  -4  cm. 

A plane model  problem of the formation of a melt film in friction of smooth bodies (the thickness of the 

film is much larger  t han  the characterist ic roughness)  is considered. To descr ibe  the motion of the melt  we use the 

equations of a viscous fluid. It is assumed that a sufficient thickness of the film allows one to neglect plastic 

deformat ions  in rubb ing  surfaces  and physical effects of the type of disjoining pressure  in thin films. 

In friction of a body  of limited dimensions on a substrate,  melting of both the moving body and the subs t ra te  

is possible, depending  on the parameters  of the problem. In the first case, consumption (rubbing off or wear) of 

the substance of the body  and,  consequently,  the presence of a component  of the body velocity toward the contact 

zone have a subs tant ia l  effect. The  dependence  of the rate  of wear (rate of melting) on the determining pa ramete r s  

along with the d e p e n d e n c e  of the force of friction are  determined in solution of the problem. The load - the force 

pressing the body agains t  the substra te  - is assumed to be known. As is shown in 11, 4 1, the assumption of a melt  

layer of constant  th ickness  is justified, which makes  it possible to obtain dependences  for the rate of melt ing and  

lhe force of friction f rom the balance relations of mass  and  heat in the melt  film. A drawback of the assumpt ion  is 

a reduction of the o rde r  of the determining sys tem of equations and the inevitable relationship between the pressing 

force and  the consumpt ion  of melt  in the initial cross section. In [1 I the natura l  assumption that consumption in 

the initial cross section equals zero and the entire melt  is entrained by a moving plane is adopted. In spite of the 

specific value of load corresponding to this solution Y0, it can be used in virtually all applications, since the 

correction to it al lowing for  the actual load value Y is on the order of 

62 dp 62 }'-Yo 

2~ Udx - l 2 2~U 
- - < <  1 

and,  as a rule, is small  due  to the small thickness of the melt layer. 

In 14 ] a case of melt ing of a body on a slowly moving heated subs t ra te  in which with a sufficient value of 

pressing force the r educed  pa ramete r  is higher than unity and, depending on the value of the load, a portion of 

the melt  is pressed out  in front  of the body is considered.  A more accurate  formulation,  which is based on the 

method of integral  re la t ions  of boundary- layer  theory  and  leads to the necessi ty  of integration of a sys tem of 

ord inary  differential  equat ions,  is developed in [5 ]. 
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Fig. 1. Simplified scheme of frictional contact in friction of heated or the rmal ly  

insula ted  body on melt ing substrate .  

If in h igh- speed  friction of solid bodies the substrate is melted,  then account for  the  variable thickness of 

a melt layer  is of principal  importance.  In [6] the problem of subs t ra te  melting in mot ion  of a hea ted  body is 

considered by an  asympto t i c  method in a self-similar  formulation. An al ternative approach is based on exact  solution 

of the sys tem of equat ions,  in which small terms are  discarded. Est imates  show that the  flow of liquid in the melt  

film can be descr ibed  in an approximat ion of lubrication. In fact, the convective te rms in the equation of inflow of 

heat are on the o rde r  of EcPr,  if the subst ra te  melts  due to viscous dissipation in the contact  zone, or  on the order  

of Ste, if the subs t ra t e  melts in contact with a moving heated body [7 ]. The  convective t e rms  in the equation of 

momentum are on the  o rder  of Ec or S te /P r .  Thus ,  a lubrication approximat ion can be used  if Ec, S t e / P r  << 1 (for 

a fas t -moving the rma l ly  insulated body)  or Ste, S t e / P r  << 1 (for a heated body).  T h e  sys tem of equations in a 

lubrication approx ima t ion  that describes the flow in the melt film has the form 

+ Ov 0 k 02T + ~ (Ou] 2 oZu (1.1) __Ou - - =  , _ _  = 0 ,  - d ~ P + j u - - = 0  
Ox Oy Oy 2 [ Oy ) d x  Oy 2 " 

Here x, y are Car te s i an  coordinates associated with the moving body; the axis y is d i rec ted  toward the melt  layer  

(Fig. I) .  
2. Plane Boundary-Value  P rob lems  of Hea t  Conduction. In general,  the s tudy  of problems of heat and  

mass t ransfer  with phase  transitions is complicated by the necessity of s imultaneous solut ion of the h y d r o d y n a m i c  

and thermal  par ts  of the problem in the melt region and the thermal  problem in a solid phase  with an unknown 

boundary  - the f ront  of the phase transit ion - the position of which is de te rmined  by an addi t ional  boundary  

condition - the Stefan condition. However,  in a number  of formulat ions,  a solution of the thermal  problem in a 

solid phase  and,  consequent ly ,  the heat  flux f rom the melt zone can be found irrespective of the shape of the melt  

layer. Often the h y d r o d y n a m i c  part  of the problem can be considered separately  a f te r  solution of the combined 

thermal  problem in the  melt  layer and  solid and  determination of the position of the front .  

As an example  of determinat ion of heat  outflow to the solid phase, we consider the  famil iar  one-d imens iona l  

solution of the classical Stefan problem for the equation of heat  conduction. Let the mel t  front  x = 0 move at  a 

constant  velocity - U  inside a solid substance  {x < 0} with tempera ture  T O [8 1: 

d T  d2T 
PsCs U -  = k s -  x < O" 

d x  dx  2 ' - ' 

x = 0 :  T T m, [kd~x'] +0 = = P s U L ,  x =  - co: T =  T O . (2.1) 
-0  

Using two bounda ry  conditions, we can determine the profile of the t empera tu re  and  heat  outflow to the 

solid substance.  T h e n  the Stefan condition can be written in the form 
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Fig. 2. Plane Stefan problem: formation of melt  layer  in melting of half-plane 

by hea ted  body. 

k__d~xdT ] +0 = psUL + pscsU (Trn - TO) = PsULe " 

Thus ,  for the one-dimensional  formulat ion,  it follows from the assumption of s tat ionari ty of the t empera tu re  

profile in the  solid subs tance  in the sys tem of coordinates associated with the moving melt front that  allowance for  

heat removal  to the solid substance is equivalent to use of the effective quanti ty L e = L + cs(T m - T 0) instead of 

the specific heat  of melting. 

Within  the f ramework  of the same one-dimensional  formulat ion we assume that the solid subs tance  melts  

in motion of a heat  source {x _> lr} with tempera ture  Tw > Tm. When EcPr  << Ste << l, a melt  l ayer  is formed as 

a result  of hea t  t ransfer ,  and the convective terms and viscous dissipation in the equation of heat  inflow can be 

neglected. Thus ,  the thermal  problem is separa ted  from the hydrodynamic  and for the melt  layer  we have the 

following bounda r y -va l ue  problem: 

k d2T 0 
dx 2 ' 

X = lT : T = Tw , x = O : T = Trn , k d~x ] = R s U L e  . 
+0  

Using  three  boundary  conditions, we find the thickness of the melt  layer: 

Cv (Tw -- Tin) v Ste e 1 Ps Stee (2.2) 
I T - - U  Pr N '  N = ~ - ,  = Le 

T h e  one-d imens iona l  problem is physically inconsistent,  since it is necessary to organize the removal of 

the melt  in a special m a n n e r  (e.g., absorpt ion of it by the surface of a heat source moving at velocity NU). However ,  

this formula t ion  can be used in melt ing of a solid substance by a blunt heat  source. If EcPr << Ste << l and  the 

curvature  radius  of the heat  source at a front  point R >> IT, then the formulated relation is applicable near  it and  

the th ickness  of the melt  layer  is prescr ibed by formula (2.2). Since in this case the Reynolds n u m b e r  over the size 

of the mel t  zone is small,  S tee /NPr ,  the fields of velocity and pressure  can be determined from the solution of the  

equations in the  Stokes approximation.  

We now consider  a plane formulat ion of the Stefan problem. In a polar system of coordinates  {r, ~o} with 

a pole at  the  critical point of the moving heat  source (Fig. 2) the Stefan condition has the form: 

PsUL(sin~,A + cos~'A) = k ~ A  A O-~)]r=A+O" (2.3) 

Here  r = A(~o) is the equation of the mel t ing front. An obvious solution of the plane problem is an  analog of the  

one-d imens iona l  solution presented above. We consider this case of a principally different geomet ry  of the hea t  

source by the  example  of a beam {~o = 0} moving in a longitudinal direction. At EcPr  << Sle << l ,  when the  
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t empe ra tu r e  satisfies the Laplace  equation in the melt layer  and the heat  outf low to the solid substance is neglected 

(we let To -- Tm or take into account  the outflow in a model manner  by subs t i tu t ing  L for Le) , it is not difficult to 

find a solut ion of the bounda ry -va lue  problem 

ATI = 0 ,  0 < r l  -<A 1, 0_<9o_< ZTr, 

T 1 (r 1,0) = T 1 (r 1,2Jr) = 1 , 

T 1 (0,~o) = 1,  T 1 (A],~o) = 0 ,  (2.4) 

, OT l A' l OT 1 
sin~oA 1 + cos~oA 1 - Or I A 1 - A1 0~o ' rl = AI (~o), 

1 
m , 

A 1 (~o) - 2 s i n 2 ~  2 
T l ( r l , go )  = 1 - 2V~r  1 sin~~ 

2 "  

Here  rl -- r / lT,  TI = (T - T m) / (Tw - Tin) are dimensionless variables. T h e  mel t  front has a parabolic shape.  With 

dis tance f rom the edge of the beam,  the temperature  profile changes f rom T] ( r  1) = 1 - ~ at ~o = sr to l inear  

along the  coordinate across the  beam.  The  heat flux has a singularity r -1/2 at  r = 0. Since A(Tr) = l r / 2 ,  other  

pa ramete r s  being equal, the  thickness of the melt layer  in front of the plate  is half  that in front of the body,  which 

has a f ront  point. The cons t ruc ted  solution is valid if the thickness of some  hea t  source on the scale l > lT can be 

neglected.  
In friction of a solid body  on a melting substrate,  allowance for the  hea t  outflow from the melt  zone to the 

su r round ing  solid substance is important .  If the melt layer  is ra ther  thin, t hen  the heat outflow can be de te rmined  

assuming  that  a heat spot with t empera tu re  Tm moves along the substra te  surface .  This scheme is applicable if the 

thickness of the tempera ture  boundary  layer  l/d-P-e is much larger than  the thickness of the melt  layer.  For  a 

thermal ly  insulated body it is necessary  that  d-E-c-P-r << 1 [7 ]. If the subs t ra te  melts  in contact with a moving hea ted  

body,  then  the scheme with a heat  spot is applicable when svr~e << 1. T h e  dependence  of heat outflow on the 

dis tance x from the spot edge  can be determined from the self-similar solut ion for a tempera ture  boundary  l ayer  

q (x) = V \---YU-x j (Tin - To)' 

q (x) 1 Ste w ksc s , Stew = 

p vL - -   kc;V) L 

3. Melting of Subs t r a t e  Due to Frictional Heat  Release in Contact  with a Moving Thermal ly  Insula ted  B o d y .  

A case of high-speed mel t ing of solid substance by a thermal ly  insulated thin  body is studied in [7 ] in the same  

approximat ion .  By symmet ry ,  the problem corresponds to a partial case of mel t ing  of substance by a moving plate 

(the sur face  of the subst ra te  beyond  the zone of frictional contact is a s s u m e d  to be thermally  insulated).  In this 

case the  dependences are simplif ied and  can be presented in a finite form. 

T h e  boundary condit ions for sys tem of equations (1.1) are 

OT 
y = O :  - - = 0 ,  u = O ;  

Oy 

l- 
OT 1 

y=d-O 
y = p VL ' (x) = | -  I, - -  , u = U ,  v =  (1  - N )  U d  ( x ) , ,  T =  Tm. 

I 

OyJy=6+O k 
(3.1) 
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The quadratic velocity profile is determined from the equation of momentum and the boundary  conditions. 

The pressure gradient  in the layer is found by the first equation of (1.1), which is integrated with respect to the 

layer thickness (balance of consumption). In finding the integration constant we use an initial condition 6(0) = 0 
that is natural for a thermally insulated body. Substitution of the velocity profile into the equation of heat inflow 

gives an ordinary differential equation for 6(x) 

c3' + q (x)_ = 1 + 3 (2N - 1) 2/zU (3.2) 
PsUL Ps L 

Using formula (2.3) for heat outflow q(x), we have 

The solution of Eq. (3.3) in dimensionless variables is 

(3.3) 

= l ' - l '  f l =  ' 61 =AX/xl  ' 
k / 

A = ~ / / 2  / [1 + 3 ( 2 N -  1) 2 ] 

N 
+ 

For weak and  strong heat removal we obtain 

Ste~ kscs)  Ste w v f ( k s C s l .  
~ Ec Pr k e r n  ) vr~ Ec Pr - -  [k--~) 

2 

A = 

II + 3 ( 2 N -  1)2]) Stew d ( k s c s )  ( S t e w < < ~ / E c P r ) ,  

U vr~-~ Ec Pr [kcvN ) 

1 + 3 ( 2 N -  1) 2 vr~ Ec P r  ~] f (kcvN]  
U Ste w u  ksc s ) (Stew >> ~ Pr ) .  

If we neglect the variation of the thermophysical characteristics of the medium in phase transition, then, 

Stew 4 V~n Ec Pr 
A = v r 8  - _ _ _ , A =  

Ec Pr Ste w 

The dependence of the pressure in the layer on the longitudinal coordinate has a form 

p (x) = 6/~U (2N - I) if2 In A2 
A2t 

Here we took into account that the pressure in the last cross section of the melt layer was constant  p(l) = 0. For 

the force of friction 

X =  f~u Ouo_._y dx= 4 ~ U ( 3 N -  1) ~--A = 4/~U(3NA - 1) -~cRe . 
0 y=O 

If we neglect the variation of the thermophysical characteristics of the medium, then 

(3.5) 

X = 2 " c ~ U  1 + 
x/8= Ec Pr 

/ 2  
(Ste w << V~-c Pr ) , 
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 tew 
X = 2/~U V t n Ec Pr 

The load value is de te rmined  by the formula 

- U -  l / 2 (Stew >> vr-E-cc Pr ) .  

l 
Y = f pax = 6 (2N - 1) pLl. (3.6) 

o A 2 

At smaller values of the pressing force, a solution of the problem in this formulation does not exist (a melt 

layer can originate inside the zone of frictional contact). The assumption that ~ (0) = 0 (contact between body and  

substrate) leads to the fact that  at larger values of the pressing force a portion of load is compensated by a 

concentrated force applied to the body in the cross section x = 0. 

4. Melting of  Subs t r a t e  in Contact  with a Moving Heated Body. As is shown above (Sec. 2), when 

T w > Tin, a melt region of a thickness lT/2 is formed in front of the heated body. The contribution of this zone to 

the balance of mass and heat  in the melt layer - I T / I  = S te /P rRe  is negligibly small, since in the approximation 

considered the terms - l / R e  are  neglected. Within the framework of the equations of lubrication, we have for 6(x) 

, q (x) 3 - 8N + 6N 2 # U  k (T w - Tin) 

c~ + PsUL - Ps L ~-- + PsUl.z 3 

Using formula (2.5) for the heat outflow q(x), we obtain 

x/~ 7 ~ e P r - - l k c v N I  Re N R e P r  6 

The solution of Eq. (4.1) in dimensionless variables is 

(4.1) 

61 ~ -  x I x . t / ' ( R e P r ]  6 = A ~ / x  l 
= l '  t s t e T '  ' 

A =  d 1 + (6N 2 - 8 N +  3) -) 

For weak and strong heat  removal 

+ - -  
Ste/,  N) 

Stew V [  ( ksCs ] . 

EEP,   S,ew  f scs/ 
A = d 1 + (6N 2 -  8N+ 3) Sle)) ~ tkcvN) 

Ste2w << Ste + (6N 2 - 8N + 3) Ec Pr ; 

A = 
Ste + (6N 2 - 8N + 3) Ec Pr 

N ~ Ste w t ) 

Ste2w >> Ste + (6N 2 - 8N + 3) Ec P r .  

If we neglect variations of the thermophysical characteristics of the medium, then 

A = 2 1 + Ste  ) 

Ste w v~- (Ste + Ec Pr) 
A =  

' Sxf-S~-e Ste w Ste 
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Fig. 3. Dimensionless force of friction X1 as a function of dimensionless 

relative velocity of motion U 1 (the substrate material and dimensionless 

parameters of friction are given in Table I). Curves a and b correspond to 

friction of thermally insulated and heated bodies. 

TABLE 1. 

Position in 
the figures Material Pr Re0 Sic Stew 

I 

II 

11 

Ice 

Aluminum 

Ice 

11.4 

0.028 

11.4 

3.85-106 

5.33.106 

3.85.106 

0.07 

0.01 

5.10 -5 

0.040 

0.005 

0.064 

The dependence  of pressure in the layer on the longitudinal coordinate, load, and friction force are 

determined by formulas similar to (3.4)-(3.6): 

- In = -  , 

A2l A2l Ste 

y =  6 ~ U ( 2 N -  1) R e P r  

A 2 Ste 

At smaller load values, a solution of the problem in this formulation does not exist. At higher values of the 

pressing force, melting inside the substrate begins. In this case 

x = 4 ,v ( 3 N  - 1) Pr) 
A u  Ste ) "  

In the case of weak heat removal 

X - l J  3 / 2 ( S t e > > E c P r ) ,  X -U 1/2 (Ste << Ec Pr) , 
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with s t rong heat  removal  

X - lJ 3 / 2  (Ste >> Ec P r ) ,  X -W -1/2 (Ste << Ec P r ) .  

As an example  of use of the ob ta ined  relations we consider the behavior  of the force of friction as a function 

of the velocity of motion under  real  condit ions of high-speed friction. T h e  different  cha rac te r  of the dependence  

X(U),  which is de te rmined  by thermal  conditions in the contact zone, is of interest .  F igure  3 presents the curves 

Xl (U1), where  Xj = X / p L I  is the d imensionless  force of friction, U 1 = V--E--~ -- U / V T  is the dimensional  velocity of 

motion. Variat ion of thermophysical  pa rame te r s  of the substrate mater ial  in phase t rans i t ion  is neglected. Since the 

Reynolds  n u m b e r  changes with the velocity of sliding, the quantity Red = Re/V-E--~= lv'--s is assumed to be constant .  

Curves  a and  b correspond to the friction of a thermally insulated and a hea t ed  body,  respectively. T h e  

thickness of the melt  layer  is c3 = 10 - 5  and  10 -4  cm (l = 1 cm) at points 1 and 2, and  in the range of pa ramete r s  

between them a transit ion to the mode  of friction with a developed melt layer  occurs. T h e  curve Xi (U1) for a hea ted  

body passes  th rough  the coordinate origin, since even at a small velocity of motion a sufficient thickness of the melt  

layer is provided by the heat flux f rom the body. For a thermally insulated body,  the  initial portion of the curve 

is, as a rule,  character ized by reduct ion of the force of friction due to a sharp  increase in the thickness of the melt  

layer. Th is  p robab ly  explains the exper imenta l ly  observed substantial  decrease in the  force of friction with an  

increase in the velocity of motion and  format ion of the melt layer in the zone of frictional contact.  At a large velocity 

of motion,  the weak heat  removal is asympto t ic  and the force of friction increases with the  velocity. At ra ther  large 

velocity of motion,  the force of friction for  a heated body becomes equal to that  for a t he rma l ly  insulated body (Fig. 

3, I) .  T h e  intersect ion of curves b and  a corresponds to the instant  when the m a x i m u m  tempera ture  in the melt  

layer exceeds  the tempera ture  of the body,  the thickness of the layer  is res t ra ined by  the heat  flux inside the 

moving hea ted  body,  and the force of friction is, therefore,  higher than in the case of a thermal ly  insulated body.  

In Fig. 3, I I  the point of intersection shifts  to the region of high velocities of motion, since the Prandtl  n u m b e r  is 

small for a lumin ium (liquid metals) and  the effect of viscous dissipation on thermal  processes  in the layer  is weaker .  

Figure 3, I I I  presents  the situation of s t rong heat removal Ste2w >> Ste, when for a hea t ed  body the curve X1 (U1) 

has a valley in the range of the velocity of motion Ste << UZPr << Ste2w . 

5. Length of  Melt Zone  Behind Body.  A solution of the problem of collapse of a cavity behind a moving 

heat source of an arb i t ra ry  nature  in approximat ion  of a thin layer  is constructed in 17 I. The  flow in the wake 

region is character ized by a constant  velocity profile u(x ,  y) = U N  and tempera ture  T ( x ,  y) = Tin, and the length 

of the melt  cavity is determined by the relation 

t+l c 
p s V L 3 ( l )  = f q ( x )  a x .  (5.1)  

l 

Here 6(l) is the thickness of the melt  l ayer  in the cross section x = l. The  formula gives the lower bound for the 

length of the melt  layer,  since the t empera tu re  in the cross section x = l is T(l ,  y) > Tm. Est imate  (5.1) is the more  

accurate,  the smal le r  the corresponding Stefan number  Stem = cv(Tmax - T m ) / L ,  Tmax = max T(l, y) . For a 
yE [0, 8(/)1 

thermal ly  insula ted body Stem - E c P r  << 1, with account for heat  inflow from the body  Stem NSte + EcPr  << 1. 

Using formula  (2.5) for the heat outflow q(x)  to the solid substance,  we obtain 

r l+ = l +  Stew 

For a the rmal ly  insulated body 

V/r(/~) A ~ / ~ E c P r  . t / (kCv N] 
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With weak heat removal lc / l  = B / 2  >> 1, and with strong heat  removal lc/ l  = B << 1, 

B =  [1 + 3 ( 2 N -  1) 2 ] ~ E c P r  kc v 

SteZw ksc s 

In a case of a hea ted  body the relations are 

- > >  1 , - -  = B <<  1 
l 2 l 

A x/ :r Ste w f  ( kcvN ] 
2 Ste w I k s c s ) '  

B = :r l S t e +  (6N 2 - 8N + 3) Ec P r l  kcv 

Ste2w ksc s " 

N O T A T I O N  

U, velocity of motion of body relative to substrate; Y, load (force pressing body against substrate) ;  X, force 

of friction between body and  substrate;  l, length of body (zone of frictional contact).; IT, length of melt zone in 

v Stee 1 
front of body, IT = ~ Pr  N '  lc, length of wake (cavity) of melt behind body; Tw, temperature of body; Tin, melting 

point of substrate material;  To, temperature  of substrate material at a dis tance from melt zone; 5, thickness of melt 

layer; p, pressure in melt  layer; /~,  dynamic viscosity; p,  density; v = l~/p, kinematic viscosity; Cv, heat  capacity; 

k, thermal  conductivity of melt;  ~ = ks/psCs, thermal diffusivity of substrate material  in solid phase; q, heat  outflow 

from melt zone to solid phase;  L, specific heat of melting; Le -- L + cs(Tm -- TO), effective specific heat  of melting 

of substrate material; P r  = Cv~/k, Prandtl  number of melt; Re =Ul/v, Reynolds  number  for melt layer;  Ec = 

U2/L, Eckert  number; Ste = cv(T w - Tm)/L, Stefan number;  Stee = cv(Tw - Tm)/Le, Stefan number  for effective 

specific heat of melting; Stew = cv(Tm - To)/Le, Stefan number  character izing heat removal from melt  zone to 

substrate with temperature  T O at distance from zone of contact; N = Ps ratio of densities of solid and liquid phases p '  

for substrate material; Pe = Ul/2, Peclet number; Re0, modified Reynolds number .  Subscripts: T, related to hea ted  

body; c, related to cavity of the melt; w, related to wall; m, related to melting; 0, characterizes an "undis turbed"  

state; s, related to solid phase;  e, at "effective" parameters;  1, at dimensionless  parameters not having a simple 

physical interpretation. 
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